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Abstract. The atmospheric products of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) 

algorithm include column water vapor (CWV) at 1 km resolution, derived from daily overpasses of NASA’s 

Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the Aqua and Terra satellites. We 

have recently shown that machine learning using extreme gradient boosting (XGBoost) can improve the estimation 15 

of MAIAC aerosol optical depth (AOD). Although MAIAC CWV is generally well validated (Pearson’s R >0.97 

versus CWV from AERONET sun photometers), it has not yet been assessed whether machine-learning approaches 

can further improve CWV. Using a novel spatiotemporal cross-validation approach to avoid overfitting, our 

XGBoost model with nine features derived from land use terms, date, and ancillary variables from the MAIAC 

retrieval, quantifies and can correct a substantial portion of measurement error relative to collocated measures at 20 

AERONET sites (26.9% and 16.5% decrease in Root Mean Square Error (RMSE) for Terra and Aqua datasets, 

respectively) in the Northeastern USA, 2000-2015. We use machine-learning interpretation tools to illustrate 

complex patterns of measurement error and describe a positive bias in MAIAC Terra CWV worsening in recent 

summertime conditions. We validate our predictive model on MAIAC CWV estimates at independent stations from 

the SuomiNet GPS network where our corrections decrease the RMSE by 19.7% and 9.5% for Terra and Aqua 25 

MAIAC CWV. Empirically correcting for measurement error with machine-learning algorithms is a post-processing 

opportunity to improve satellite-derived CWV data for Earth science and remote sensing applications. 

1 Introduction 

Water vapor represents a small but environmentally significant constituent of the atmosphere. The integrated water 

vapor from ground to space is defined as the column water vapor (CWV), in units of centimeters (i.e. precipitable 30 

water vapor) (Gao and Goetz, 1990). CWV has important applications in many fields, such as atmospheric 

correction of remote sensing images, Earth energy balance and global climate change, land surface temperature 

retrieval in thermal remote sensing, and astronomy. Thus, high resolution CWV values with global coverage have 

multiple uses in Earth science and remote sensing. CWV has been measured by multiple technologies and 
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monitoring networks, including sun photometers, GPS sensors (e.g. SuomiNet), Aerosol Robotic Network 35 

(AERONET) sun photometers, and satellite remote-sensing. The AERONET sun photometer network measures 

CWV in approximately 400 stations worldwide, in channels centered at 940nm and provided to the user in Level 2, 

which is the highest data-quality level provided by AERONET (Pérez-Ramírez et al., 2014). The AERONET CWV 

data have been well validated with the U.S. Department of Energy Atmospheric Radiation Measurement Program 

(ARM) radiosonde observations and other ground-based retrieval techniques such as microwave radiometry (MWR) 40 

and SuomiNet GPS receivers, and do not observe any dependence of biases with the zenith angle (Pérez-Ramírez et 

al., 2014). AERONET CWV has been used in studies that examine aerosol optical, microphysical, and radiative 

properties in Africa (Adesina et al., 2014; Boiyo et al., 2019; Kumar et al., 2013), in the Brazilian tropics (Schafer et 

al., 2008) , and in Beijing and Kanpur (Wang et al., 2011). Global satellite-borne CWV is available at high 

resolution (1 km), from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm derived 45 

from daily overpasses of NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard 

the Aqua and Terra satellites. The MAIAC CWV is computed using MODIS near-infrared (NIR) channels centered 

at 940nm. This method applies two ratios of channels to compute the water vapor transmittance, and then compute 

the amount of water vapor using look-up-tables (Lyapustin et al., 2014). The MAIAC CWV algorithm was validated 

against ground measurements of CWV from 265 AERONET stations worldwide, with a relatively strong association 50 

(Pearson’s R > 0.95; root mean squared error [RMSE] < 0.25 cm; average accuracy of ±15%) (Martins et al., 2019). 

These datasets were collocated by averaging MAIAC values within 9 x 9 pixels and AERONET values ±30 minutes 

of the satellite overpass in cloud-free conditions. A significant upward trend (p < .05) for MAIAC TERRA was 

found over most regions, although this was not significant over the Northeastern USA. Globally, the highest average 

correlation between MAIAC CWV retrievals from both Aqua and Terra with AERONET CWV have been shown in 55 

Asia and both Northern and Southern regions of the USA.  

 

In spite of the strong performance of MAIAC CWV in multiple locations, comparing it with collocated AERONET 

CWV, there may be opportunities to characterize and correct complex interactions and challenging conditions that 

increase satellite retrieval error. However, it has not yet been assessed whether machine-learning approaches can 60 

improve the estimation of satellite-borne CWV. We have recently demonstrated that machine learning using 

eXtreme Gradient Boosting (XGBoost) can improve the estimation of MAIAC aerosol optical depth (AOD) 

parameters over AERONET stations (43% decrease in cross-validated RMSE) (Just et al., 2018). Gradient boosting 

involves fitting a large number of tree-based models where each subsequent tree is made a weak predictor of the 

error from the previous trees. The component trees use a recursive binary partitioning that accommodates varying 65 

types and scales of predictor variables and is robust to outliers (Elith et al., 2008). An advantage of flexible 

algorithmic machine learning approaches such as XGBoost is that they can model complex phenomena, including 

interactions of multiple features (e.g. retrieval angles, seasonality, and surface characteristics). The resulting 

prediction model can provide an algorithm to reduce the retrieval error. Machine-learning tools for model 

interpretation can also help explain the contributions of these features to retrieval error and guide feature selection to 70 

build parsimonious models.  
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While the satellite data record continues to grow, the ground monitoring networks that can be used for validation 

and algorithmic measurement error correction of satellite retrieval products are still sparse. Collocated ground-

satellite datasets may thus have important non-independent spatiotemporal structure if they rely on observations that 75 

occur in only a few locations. Flexible machine-learning models would overfit to the characteristics of these 

particular stations or the days when AERONET data are available if cross-validation assumed independence of 

observations. While machine-learning applications in aerosol research have begun to adopt group-K-fold cross 

validation for assessing model fit across fixed monitoring networks (Di et al., 2016), we propose a novel cross-

validation approach taking into consideration data structure due to both fixed sites and correlation of observations 80 

from the same day. 

 

The goals of this work are to 1) evaluate whether machine-learning gradient boosting models can improve satellite-

based CWV retrievals, and 2) understand the contributions of different features as well as spatial and temporal 

structures of the ground station measures to predictions of error in the estimated CWV. The data and machine-85 

learning methods are described in section 2, followed by a discussion of the results in sections 3 and 4. 

2 Description of the Data 

In order to assess the agreement of the MAIAC estimates of CWV with those from AERONET, collocated datasets 

were built using MAIAC data where AOD was available (representing clear sky conditions) from both Terra and 

Aqua (separately) collocated to the nearest 1 km * 1 km grid centroid and the closest observation in time (no more 90 

than 60 minutes) with cloud-screened (version 2, level 2.0) (Smirnov et al., 2000) measures of CWV from the 

AERONET network of sun photometers over the Northeastern USA (including 13 states and the District of 

Columbia from Maine to Virginia). The study period included 10,247 observations (from 75 AERONET stations) 

for Terra (2000-2015) and 8,536 observations (from 71 stations) for Aqua (2002-2015). All analyses were 

performed for Terra and Aqua datasets separately. AERONET stations in the Northeast are largely urban and coastal 95 

(Fig. 1). We defined our target modeling parameter as the difference between MAIAC and AERONET CWV 

(ΔCWV = MAIAC CWV - AERONET CWV) such that any variation from zero indicated a component of 

measurement error that we sought to explain.  

 

After exploratory scatterplots of ΔCWV versus time showed a temporal cluster of large outliers coming from a 100 

single AERONET station (City College of New York), observations from this site between 2007-06-17 and 2009-

01-01 were dropped from further analysis, including 99 observations collocated for Terra and 95 observations for 

Aqua datasets. This particular period, which was flanked on both sides with months without values at that station, 

showed a clear deviation from the monitor’s typical trend across the remainder of the study period. 

 105 
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The date range for the collocated Terra dataset was from 2000-02-25 to 2015-12-27, including observations from 

3,024 unique days (52% of days during this interval). The date range for the collocated Aqua dataset was from 2002-

07-04 to 2015-12-28, including observations from 2,627 unique days (53% of days during this interval).  

3 Statistical Methods 

We examined the use of XGBoost (Chen and Guestrin, 2016), for improving satellite-based MAIAC CWV 110 

retrievals, and decreasing estimation error as this method had previously outperformed two related supervised 

learning approaches using regression trees, namely gradient boosting and random forests, in a similar application 

(Just et al., 2018). The XGBoost algorithm is a popular implementation of boosted regression trees (Friedman, 

2001). A regression tree is a model that specifies a few recursive binary splits of predictors and assigns a constant 

value to all cases that end up in the same terminal node. A set of multiple trees can be used for prediction by 115 

combining the outputs of the individual trees for each case. Such a set of trees can accommodate complex 

relationships including non-linearities and interactions while being robust to outliers. Boosting is a method of fitting 

a series of models iteratively, with each model fit on the residuals of the previous models. While each tree is 

individually a weak learner, this process of sequentially learning by combining many iteratively fit trees performs 

well, achieving low testing error. The XGBoost package is a scalable gradient boosting implementation with 120 

additional features including penalties to avoid overfitting and optimized computational speed (Chen and Guestrin, 

2016). 

 

We end up with more parsimonious XGBoost models, i.e. fewer trees, by adopting the concept of ‘dropout’ from 

deep learning, in which individual learners are randomly dropped during training. XGBoost models were fit with 125 

tree dropout using DART: Dropout meets Additive Regression Trees (Vinayak and Gilad-Bachrach, 2015). The tree 

dropout implementation in DART avoids the diminishing contributions and over-specialization of later trees in 

gradient boosted regression trees. This is particularly important in our application given the low number of 

AERONET stations and relatively small size of the collocated datasets for machine-learning algorithms. XGBoost 

has several hyperparameters related to the desired size and complexity of the model that need to be set in training for 130 

each dataset. Each time we trained a model we further split the training data and performed a nested comparison of 

XGBoost models using 50 random sets of potential hyperparameters generated to be well-spaced across the range of 

potential hyperparameter values using Latin hypercube sampling. We selected the set of hyperparameters that 

minimized the RMSE within the withheld portion of the training data before refitting with all training data.  

 135 

Prior to feature selection, initial analyses included 25 candidates features such as: MAIAC variables including an 

uncertainty parameter related to blue band surface reflectance, relative azimuth angle, and AOD; time trend (integer 

date); elevation; several land use terms from the National Land Cover Database 2011 aggregated to proportions 

within 1 km * 1 km grid cells as well as proportion of water within 5-15 km buffers; and distance to major water 

bodies (Great Lakes and the Atlantic Ocean). Feature engineering calculated candidate features based on spatial 140 
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patterns in non-missing MAIAC data including the number of contiguous non-missing grid cells (clump size) and 

the number of non-missing observations in focal windows of side lengths from 30-510 km. Details on the data 

sources and feature engineering for all candidate features are included in Supplementary Materials. No external 

meteorology or assimilated data were included.  

 145 

The contributions of each feature to cross-validated predictions were estimated from Shapely Additive Explanations 

(SHAP) values (Lundberg et al., 2018). These SHAP values form an additive feature attribution measure to interpret 

complex machine-learning models. SHAP values estimate the contributions of each feature to each individual 

prediction (for ΔCWV, this is in units of cm). Specifically, the SHAP value for a given predictor and a given 

observation is the difference in the output, i.e. a predicted ΔCWV, if the model is fit with or without the predictor. 150 

For each observation, the sum of all SHAP values, plus the bias term (the overall mean of ΔCWV), equals the 

prediction from the XGBoost model. The resulting matrix of SHAP values can be summarized to understand how a 

predictor contributes to the predictions. The mean absolute SHAP value across all observations summarizes the 

global feature importance and more local model interpretation is possible through exploratory data visualizations 

such as scatterplots of individual predictors versus their SHAP values. 155 

 

Because a more parsimonious set of features can ease future efforts to build large spatiotemporal datasets for 

algorithmic correction, an initial feature selection approach was performed prior to evaluating overall model 

performance. Feature selection was performed in a randomly selected 20% subset of the data to avoid overfitting 

prior to later model evaluation steps. Within this subset, we evaluated both the mean absolute SHAP values as a 160 

measure of global feature importance within a full model with all 25 candidate features, as well as a recursive 

stepwise procedure. We adopted 5-fold cross-validation split by MAIAC stations to alleviate overfitting to spatial 

features of the relatively low number of unique stations. In each round of cross-validation, backwards feature 

selection was applied to rank and remove the features by increasing importance. Starting with the XGBoost model 

containing all 25 candidate features, the overall RMSE was calculated from the out-of-sample predictions after 165 

cross-validation. Then the feature importance was ranked by mean absolute SHAP values for all the features in the 

model from low to high. This step was repeated removing the least important feature at each step. After plotting the 

overall RMSE from the cross-validated predictions against the number of features, we selected the model with the 

lowest RMSE for Aqua and Terra separately. We then pooled the set of top-ranked features from both satellites to 

facilitate comparisons between the Aqua and Terra models examined in the full dataset.  170 

 

Using the selected features, grouped ten-by-ten-fold cross-validation randomly splitting the data by both station and 

day was performed on the whole dataset. In each training iteration, all observations from one fold of stations and 

from one fold of days were withheld with the remaining dataset containing roughly 0.9*0.9 = 81% of the training 

data (a similar share of training data as in 5-fold cross-validation). However, for each combination of withheld data, 175 

predictions for evaluating model performance and the corresponding SHAP values were only made in the 

intersection of withheld days and monitors (~1% of the data). Thus predictions for each observation were made on a 
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model trained without any observations from the same day or station (see Fig. 2). For comparison, we also evaluated 

model performance using grouped-5-fold cross-validation separately splitting the data by station or by day. 

Hyperparameter tuning of the XGBoost model was performed separately in each round of cross-validation. 180 

 

While we used an aggregated measure of the mean absolute SHAP value for each feature as a measure of feature 

importance in our variable selection, we also plotted the out-of-sample SHAP in order to aid model interpretability. 

In particular, we plotted frequencies of SHAP values by variable and in bivariate scatterplots versus observed 

values. 185 

 

Finally, we conducted an additional external validation of our final model by comparing both the original MAIAC 

CWV and our corrected CWV with an independent dataset of CWV measured by GPS-based stations in the 

SuomiNet dataset (Ware et al., 2000), within our Northeastern USA study region - many of which are quite distant 

from the AERONET sites. All SuomiNet stations use precision survey-quality dual-frequency GPS receivers and 190 

antennas. The water-lag derived CWV measures from GPS-based stations are generally considered to have excellent 

precision (5-10%), exceeding that from sun photometers (Pérez-Ramírez et al., 2014). 

4 Results 

4.1 Descriptive analysis of CWV and ΔCWV 

The overall agreement of the original MAIAC CWV and AERONET CWV was quite good with a Pearson’s 195 

correlation of 0.976 and 0.984 for Terra and Aqua, respectively, in agreement with the global MAIAC CWV 

validation (Martins et al., 2019). However, outlying values and a positive bias in Terra-derived MAIAC CWV 

particularly indicate a potential for improvement in MAIAC CWV relative to AERONET. The target parameter of 

ΔCWV (based on the difference between MAIAC and AERONET) was approximately symmetrically distributed 

and had a mean of 0.043 cm and -0.054 cm, and a standard deviation of 0.25 cm and 0.18 cm for the collocated 200 

Terra and Aqua datasets, respectively (Table 1). Descriptive scatterplots of the ΔCWV versus individual predictors 

showed some clear patterns prior to modeling (Fig. 3 and Supplementary Fig. S1). For example, there is a clear 

seasonal pattern with a larger SD of ΔCWV in the summer (0.32 cm and 0.25 cm for Terra and Aqua) when the SD 

of AERONET CWV is also highest (0.90 cm). This seasonal pattern and the positive bias for Terra (MAIAC CWV 

overestimates AERONET CWV) is seen to grow larger in more recent years (e.g. 2010-2015). This trend is related 205 

to the trend in MODIS Terra calibration, as previously reported (Martins et al., 2017).  

 

4.2 Feature Selection and Model Performance  

Variable selection using feature importance from SHAP was run in a 20% subset for both Terra and Aqua datasets. 

Using both global feature importance from a full model and a stepwise backward selection calculating RMSE at 210 
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each step after ranking variable importance by mean absolute SHAP, we selected 6 features for the Terra model and 

selected 7 features for the Aqua model. The 4 features shared by both models were time trend (date represented as 

an integer), MAIAC CWV, blue band uncertainty, and MAIAC AOD. The other variables selected for Terra were 

elevation and distance to major water body, and for Aqua were the proportion of forest in a 1x1 km square, relative 

azimuth angle, and the proportion of developed area in a 1x1 km square. Pooling these features from both satellites 215 

brought the original set of 25 features down to a more parsimonious set of 9 with little loss of model performance 

(results not shown).  

 

Using the reduced feature set, we implemented the cross-validation in the full dataset to evaluate model 

performance. In the collocated Terra dataset, the predicted ΔCWV evaluated with the grouped monitor-by-day 220 

cross-validation (10*10 fold) explained 45.0% (R2) of the variance in ΔCWV and reduced the RMSE from 0.252 cm 

(the root mean squared difference between MAIAC and AERONET CWV) to 0.184 cm, a 26.9% decrease in 

RMSE. In the collocated Aqua dataset, the predicted ΔCWV explained 24.1% of the variance in ΔCWV (R2) and 

reduced the RMSE from 0.189 cm to 0.158 cm, a 16.5% decrease in RMSE.  

 225 

The evaluation of model performance was substantively different depending on how the cross-validation strategy 

reflected the data structure. Ignoring the non-independence of the training data by site and withholding unique days 

for grouped 5-fold cross-validation (training on 80% of the data), RMSE for Terra was 0.146 and for Aqua was 

0.145 (Table 2), a much better performance (smaller RMSE) that indicates over-fitting to the particular sites in the 

training dataset. Similarly, the RMSE from cross-validation split by station (and not by day) was also slightly lower 230 

than the RMSE from station-by-day cross-validation suggesting a much smaller degree of overfitting also to the 

specific dates in the training set.  

 

After applying the XGBoost model, the measurement error of ΔCWV was corrected to be closer to zero, particularly 

for the largest magnitude ΔCWV values. For Terra and Aqua respectively, 87% and 93% of the ΔCWV observations 235 

beyond one standard deviation (outside of the dotted lines in Fig. 4, making up 24% of the collocated observations 

in Terra and 19% in Aqua) had lower measurement error (|ΔCWV|) by an average magnitude of 41% smaller in 

Terra and 53% smaller in Aqua after XGBoost correction.  

 

We describe the variation in hyperparameters from XGBoost models across the 100 runs of the site-by-day 10*10 240 

fold cross-validation. Greater variation in the selected hyperparameter values across folds with very similar training 

datasets may indicate a lower impact on model performance (Supplementary Table S2). 

 

4.3 Variable Importance Assessment 

Although the final model had already been restricted to include only the top variables from our variable selection 245 

approach, we further interpreted variable importance and the contribution of these variables with SHAP values 
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estimated in the grouped-cross-validation (at monitors and on days not included in the training data for each fold). 

SHAP values describe the additive contribution to the prediction from every variable for each observation. 

 

The SHAP overview plot illustrated different patterns of feature importance in Terra and Aqua (Fig. 5). The rank of 250 

the mean absolute SHAP values suggested that the top key contributing variables to predicting the magnitude of 

ΔCWV in the Terra dataset were time trend (even though all of the data in the testing set were from days not 

included in the training data, there was still clear seasonality when plotting the SHAP estimates), the magnitude of 

the MAIAC CWV itself, the blue band uncertainty estimate from MAIAC, the MAIAC AOD, the distance to the 

nearest major water body, and the elevation. For the Aqua dataset, the blue band uncertainty ranked at the top, 255 

followed by the MAIAC AOD, the MAIAC CWV, the proportion of developed area in a 1x1 km square, time trend, 

the proportion of forest coverage in a 1x1 km square, and the relative azimuth angle. The SHAP values ranged from 

-0.52 to 0.82 cm for Aqua, and from -0.55 to 0.30 cm for Terra, aligning with the higher overall error in the Terra 

dataset. 

 260 

For Terra, predicted ΔCWV values became larger in more recent years (Fig. 6.a). This suggests the observed 

positive bias has been getting stronger since ~2010. This trend was not observed in Aqua for which the time trend 

was a much weaker predictor. Similarly, a higher MAIAC CWV was also more likely to generate higher ΔCWV in 

Terra (a positive bias), and the influence was getting stronger along the time trend (Fig. 6.b). In contrast, in Aqua the 

model suggested that MAIAC CWV conservatively underestimated extreme values in both seasons, although the 265 

overall impact was weaker (SHAP values closer to zero) and more stationary across time compared to Terra.  

 

The impact of the rest of the features was similar for both Terra and Aqua (Fig. 7). Some outlying large AOD values 

had negative effects on the ΔCWV. Larger blue band uncertainty, higher elevation, or relative azimuth angle around 

45 and 145 degrees increased the error. The SHAP estimates of global feature and individual datum contributions 270 

clearly diagnoses two main factors: 1) changing calibration of MODIS Terra NIR bands at 940nm over time, 

resulting in a trend of CWV bias from Terra, and 2) growing underestimation of CWV with increase in AOD. 

MAIAC CWV retrieval neglects the effect of aerosol scattering, which increases the measured radiances and the 

band ratios, resulting in underestimation of CWV.  

4.4 Prediction with new data 275 

To predict into a new dataset, we refit our XGBoost models by again running our nested random hyperparameter 

tuning using DART tree dropout, this time on the entire training dataset. For both models fit to the Aqua and Terra 

datasets, the optimal set of hyperparameters (selected from the same set of 50 candidates) was the same, including 

both L1 and L2 regularization (alpha and lambda), the deepest trees we permitted (maximum depth of 9), and no 

more dropout (rate drop of 0) than the minimal random selection of one tree per model that had been fixed a priori 280 

(with the one drop option) (Table 3).   
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The resulting trained algorithm can generate ~3 million MAIAC CWV measurement error estimates per minute (on 

4 cores) in new locations using the XGBoost predict function and these can be subtracted from the MAIAC CWV 

value to generate a corrected CWV estimate for downstream use.  285 

4.5 Validation with SuomiNet GPS CWV 

As an external validation, we applied our XGBoost models to MAIAC data in 1 km * 1 km grid cells containing 

SuomiNet GPS stations. We removed about 20 observations (0.1% of the merged datasets) with outlying CWV 

values above 9 cm which were almost all from SuomiNet site P776 in year 2011. The resulting validation dataset 

with collocated Terra or Aqua MAIAC CWV and SuomiNet CWV included 17,469 and 16,466 day-observations 290 

respectively from 57 SuomiNet stations (from years 2005 to 2015). SuomiNet CWV in the Terra collocated dataset 

had a mean of 1.57 ± 1.04 cm, while the Aqua collocated dataset had a mean of 1.50 ± 1.01 cm. The SuomiNet 

CWV had a more right-skewed distribution than MAIAC CWV.  

 

After applying our correction, the MAIAC CWV had lower RMSE versus SuomiNet CWV compared with the raw 295 

MAIAC CWV in 53/57 sites for Terra and 56/57 sites for Aqua. The RMSE for agreement with SuomiNet CWV in 

the full validation dataset improved by 19.7% from 0.28 to 0.22 cm for Terra, and by 9.5% from 0.25 to 0.23 cm for 

Aqua. The Pearson’s correlations of MAIAC CWV with SuomiNet CWV were improved by 1 percentage point 

from 0.969 to 0.978 for the Terra collocated dataset, and by 0.4 percentage points from 0.974 to 0.978 for the Aqua 

dataset. Plotting the RMSE after correction at SuomiNet locations (grid cells where we make predictions), we 300 

observed higher RMSE (worse performance) near Lake Ontario and on the Atlantic coastline (Fig. 8.a). Most sites 

show improved RMSE after correction except 4 sites for Terra and 1 site for Aqua (Fig 8.b).  

 

Another goal of addressing measurement error in satellite retrievals is to improve the comparability of different 

instruments. Given changing atmospheric conditions within the same day between overpass times (Terra in late 305 

morning and Aqua in early afternoon), we use the corresponding two SuomiNet CWV measures to estimate the 

expected agreement. When restricting to days with both Terra and Aqua CWV observations collocated with 

SuomiNet observations, we had 9,940 station-days with all four measures. Raw MAIAC CWV had a Pearson 

correlation of 0.975 between Terra and Aqua, and after applying our correction this increased to 0.977, although this 

was still slightly below that of the two corresponding within-day SuomiNet CWV measures with a correlation of 310 

0.982. We demonstrate that our algorithmic correction slightly improves on the already excellent agreement of 

MAIAC CWV from Terra versus Aqua, but is still not quite as close as comparing pairs of within-day measures 

from the same ground instruments. 

5 Discussion 

The Northeastern USA exhibits large seasonal variation in CWV. While satellite retrievals using the MAIAC 315 

algorithm are overall excellent at estimating CWV, they also have seasonality in their measurement error versus 
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ground measurements from AERONET sun photometers. We show this measurement error has notable 

heteroscedasticity (larger errors with greater CWV) and has been worsening, with time, for data derived from Terra. 

Satellite retrievals using MODIS and similar platforms have considerable strengths for measurement of CWV based 

on their global daily coverage and reconstruction of longer-term records during the satellite era. Our analysis 320 

demonstrates that gradient boosting with XGBoost and features including satellite retrieval quality assurance, 

aerosol optical depth estimates, land use terms, and time trends can substantially refine satellite-derived retrievals of 

1 km * 1 km resolution CWV compared with sun photometer measures of CWV on test days and at sites that were 

withheld from training data. Even with this rigorous cross-validation, our model explains 45.0% of the measurement 

error from Terra CWV (R2), and 24.1% of the measurement error in Aqua CWV. This is an impressive proportion of 325 

the difference of MAIAC and AERONET CWV to explain given that the MAIAC CWV is already quite accurate 

with a ΔCWV standard deviation of only 0.252 cm and 0.189 cm for Terra and Aqua respectively, in spite of 

comparing a 1 km * 1 km satellite retrieval with point measurements from the AERONET sun photometers. 

 

Strategies for model training and cross-validation of powerful algorithmic predictive methods need to reflect the 330 

structure of the underlying data and the intended use of prediction models - otherwise overfitting may lead to an 

inaccurate assessment of model performance. Given the sparsity of the collocated AERONET data, we decided to 

assess performance in cross-validation that mimicked the desire to predict to new places (without AERONET 

stations) and on dates without AERONET data (e.g. when sun photometers are out of service for recalibration). 

 335 

While our XGBoost models are complex ensembles of one hundred boosted regression trees, we use the powerful 

new SHAP method for interpretation of the importance of each variable and their contributions to individual 

predictions. Contextualizing the magnitude of the SHAP value (for each variable) and examining the SHAP-based 

contribution in visualizations along with the feature value distribution can also hint where retrieval algorithms can 

be modified for better results. For example, although the measurement error was lower for Aqua, scatterplots for the 340 

top two variables by SHAP suggest that MAIAC may underestimate CWV when the blue band uncertainty is very 

low and may underestimate CWV at higher AOD values. For Terra, the date as an integer is the most important 

feature, even though our cross-validation approach meant that all SHAP values were estimated for predictions made 

on dates that did not occur in the training data. Based on the SHAP plots, the date predictor describes seasonal and 

long-term trends related to an emerging positive bias for Terra that is worse in the summertime. 345 

 

Demonstrating that there is an improvement in the agreement of corrected MAIAC CWV with the SuomiNet 

measures is a strong validation for several reasons. First, the SuomiNet stations offer a well-validated measure of 

CWV that relies on a different principle (tropospheric delay) from the sun photometry of the AERONET and the 

MODIS satellite retrieval of the MAIAC algorithm. The second strength of this validation is that the SuomiNet 350 

validation occurred at locations that are unique (not included in the training data from AERONET sites), including 

many that are far away from the largely coastal AERONET stations in the Northeastern USA. Although Terra CWV 

also had a larger measurement error versus SuomiNet CWV measures than Aqua CWV, after our correction using 
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XGBoost, the updated MAIAC CWV for Terra and Aqua both had lower RMSE values of 0.221 cm and 0.226 cm 

versus SuomiNet stations - suggesting that we may have achieved parity and perhaps reached the limits of this 355 

approach to correct for the sources of measurement error we considered in comparing this satellite retrieval product 

with point measures from ground stations. 

 

Strengths of our empirical machine-learning approach include a fast algorithm that uses only a few variables, 

primarily already included in the MAIAC retrieval suite and derived land use terms, to correct measurement error in 360 

CWV. Limitations of using MODIS-derived CWV from MAIAC include the availability of few measurements per 

day (versus geostationary satellites) and restriction to cloud-free and daytime values. Our measurement error model 

has not yet been evaluated for how well it would have worked in a region with substantially fewer AERONET 

stations or very different climate conditions.  

6 Conclusions 365 

Empirically correcting for measurement error with machine-learning algorithms is a relatively easy post-processing 

opportunity to improve satellite-derived CWV data quality for Earth science and remote sensing applications. 

Furthermore, the use of machine-learning interpretation tools points to potential sources of measurement error (e.g. a 

positive bias in CWV retrievals from Terra that is worse in more recent years) that can help when refining satellite 

retrieval strategies. We demonstrate that a parsimonious nine-predictor XGBoost model for updating satellite-based 370 

column water vapor from the MAIAC retrieval based on AERONET values can decrease measurement error as 

validated at an independent network of ground sensors across the North Eastern USA. 
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 450 

Figure 1. Study region in Northeastern and Mid-Atlantic USA with 75 unique AERONET stations showing the number of 

days with observations from the collocated Terra dataset.  
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 455 

Figure 2. Example of training (blue) and testing (brown) datasets of one fold in ten-by-ten-fold cross-validation. 

Prediction models are only evaluated on days and at stations that were not used in model training to avoid overfitting. 

 

 
Figure 3. Scatterplots of ΔCWV versus time trend and MAIAC CWV in Terra (a) and Aqua (b). Observations in the 460 
summer months (June - August) are colored in blue.  
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Figure 4. The difference between MAIAC and AERONET CWV values (ΔCWV) was reduced in cross-validation of 

collocated (a) Terra and (b) Aqua data. The corrected values of ΔCWV are shown with blue points, segments connect 465 
back to the measurement error from the raw ΔCWV. The dotted lines show one standard deviation from the mean (the 

dashed line near zero). 

 

 

Figure 5. Sina plots show the distribution of feature contributions to predictions of CWV measurement error using SHAP 470 
values of each feature for every observation. The x-axis is set between -1 and 1 to facilitate comparison across subpanels 

showing models for Terra and Aqua datasets. Features were ordered on the y-axis by their mean absolute SHAP values 
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over all observations (bold on the right of the variable names, units are the same as ΔCWV predictions in cm). The color 

is scaled to the feature value (purple high, yellow low). 

 475 

 

Figure 6. SHAP values showing the contribution of the time trend to predictions for Terra (a) and Aqua (b). The color 

represents the MAIAC CWV for each observation (purple high, yellow low). The LOESS (locally estimated scatterplot 

smoothing) curve is overlaid in red. Terra (c) and Aqua (d) SHAP values showing the contribution of the MAIAC CWV 

to predictions of CWV measurement error shown across the time period of the study. Note distinct y-axis scales for Terra 480 
and Aqua datasets. The color represents the MAIAC CWV for each observation (purple high, yellow low). 
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Figure 7. Descriptive scatterplots of the features versus their SHAP scores approximating their contribution to the 

predictions for ΔCWV (cm) on the y-axis. Subplots are ordered by overall variable importance (mean absolute SHAP 485 
score, see Fig. 5) by satellite. 
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Figure 8. (a) RMSE between algorithmically-corrected Terra MAIAC CWV and GPS-based CWV for each SuomiNet 

station shown as crosses. AERONET sites used to train the model are shown as points. (b) the difference in RMSE versus 490 
GPS CWV using the corrected MAIAC CWV relative to using the original MAIAC CWV by SuomiNet station. The four 

sites (out of 57 total) having higher (worse) RMSE after correction are shown with red X symbols. 
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Table 1. Descriptive Statistics of MAIAC, AERONET CWV and the ΔCWV for Terra and Aqua by Season.  495 

Terra 

Mean (SD) (cm) 

Spring 

(N = 2,265) 

Summer 

(N = 3,150) 

Fall 

(N = 3,101) 

Winter 

(N = 1,632) 

Total 

(N = 10,148) 

   MAIAC CWV 1.18 ± 0.82 2.71 ± 0.94 1.39 ± 0.82 0.56 ± 0.30 1.62 ± 1.12 

   Aeronet CWV 1.20 ± 0.80 2.54 ± 0.90 1.40 ± 0.79 0.60 ± 0.34 1.58 ± 1.04 

   ΔCWV -0.014 ± 0.192 0.172 ± 0.322 -0.009 ± 0.202 -0.032 ± 0.095 0.043 ± 0.249 

            

Aqua 

Mean (SD) (cm) 

Spring 

(N = 1,921) 

Summer 

(N = 2,276) 

Fall 

(N = 2,715) 

Winter 

(N = 1,529) 

Total 

(N = 8,441) 

   MAIAC CWV 1.12 ± 0.74 2.49 ± 0.84 1.33 ± 0.73 0.55 ± 0.27 1.45 ± 0.98 

   Aeronet CWV 1.16 ± 0.78 2.52 ± 0.90 1.42 ± 0.78 0.60 ± 0.33 1.51 ± 1.01 

   ΔCWV -0.049 ± 0.150 -0.027 ± 0.253 -0.086 ± 0.159 -0.047 ± 0.101 -0.054 ± 0.181 

Note. Means and standard deviations (units of cm) are shown for three-month seasons (Spring: MAM; Summer: 

JJA; Fall: SON; Winter: DJF) across all the years and the total. 
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Table 2. Predictive Performance in the Testing Dataset Comparing Three Cross-validation Strategies 

 Terra dataset Aqua dataset 

Overall variation SD 0.25 cm SD 0.19 cm 

Split by day (5 fold) RMSE 0.15 (57.8%) 

 R2 = 65.6% 

RMSE 0.14 (76.3%) 

 R2 = 36.5% 

Split by station (5 fold) RMSE 0.18 (71.4%) 

 R2 = 47.5% 

RMSE 0.16 (83.8%) 

 R2 = 23.5% 

Split by station and day (10*10 fold) RMSE 0.18 (73.1%) 

 R2 = 45.0% 

RMSE 0.16 (83.5%) 

 R2 = 24.1% 

Note. The relative percentage of RMSE compared to overall variation (SD) is listed beside RMSE. 500 
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Table 3. Hyperparameters for the Fully Trained XGBoost Model 

 

Selected values  

eta 0.44 

max_depth 9 

gamma 0.099 

lambda 38 

alpha 0.0023 

rate_drop 0 

one_drop (fixed a priori) True 

nrounds (fixed a priori) 100 

 

 505 
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